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ABSTRACT We consider a Euler-Bernoulli beam with sliding cantilever boundary conditions at both ends.
The control input to the beam is the force acting on one of the cantilevers. We derive an nth-order semi-
discrete approximation of the beam PDE and prove that the solution to the nth-order semi-discrete system
converges to the solution of the PDE as n tends to infinity. The motion planning problem addressed in this
paper is to find a control input which will transfer the beam PDE from one steady state to another over a
prescribed time interval. To address this problem, we design control inputs for transferring the semi-discrete
systems from one steady state to another using the flatness technique. We show that a control input which
solves the motion planning problem for the beam PDE can be obtained as a limit of a sequence of control
inputs which solve certain motion planning problems for a sequence of semi-discrete systems of increasing
order. We illustrate our theoretical results in simulations.

INDEX TERMS Euler-Bernoulli beam, flexible structure, finite-difference scheme, motion planning, semi-
discretization.

I. INTRODUCTION
In the early lumping approach to the control of a dynamical
system modelled by a partial differential equation (PDE),
a set of ordinary differential equations (ODEs) in time called
the semi-discrete approximation of the PDE is obtained by
approximating the spatial derivatives in the PDE. Depending
on the control objective, a finite-dimensional controller
design technique is selected for constructing a control signal
for the semi-discrete system. It is then shown that better is the
approximation of the spatial derivatives, closer is the control
signal constructed for the semi-discrete system to a limiting
control signal which solves the control objective for the PDE.
Therefore implementing the control signal constructed for a
sufficiently accurate semi-discrete system on the dynamical
system will result in satisfactory realization of the control
objective.

An appealing feature of the early lumping approach is that
existing finite-dimensional controller design techniques can

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng H. Zhu .

be used to design control signals for the PDE. This approach
has been used to design stabilizing controllers for PDEs by
solving the algebraic Riccati equation [1], [2], [3], [4], [5],
to design adaptive controllers for the heat equation using the
backstepping technique [6], [7] and to study controllability
and observability of Euler-Bernoulli beam PDEs [8], [9],
[10], [11], and [12]. From these works it is evident that the
properties of the numerical scheme used for obtaining the
semi-discrete approximation of the PDE play an important
role in the early lumping approach. The early lumping
approach has been combined with the flatness technique
to address motion planning problems for parabolic PDEs,
see [13], [14], and [15]. Inspired by this, in the present
paper we combine the early lumping approach with the
flatness technique to address a motion planning problem for
a Euler-Bernoulli beam PDE.

Consider the Euler-Bernoulli beam of unit length with
sliding cantilever boundary conditions shown in Figure 1. The
control input to the beam is the force acting on the cantilever
located at the right end of the beam. The steady states of
the beam are just the stationary undeformed (horizontal)
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FIGURE 1. Schematic of a Euler-Bernoulli beam with sliding cantilever
joints at both the ends.

configurations of the beam. In this paper, we address the
motion planning problem of finding a control input which
will transfer the beam from one steady state to another over a
prescribed time interval. To solve this problem, we introduce
a semi-discrete approximation of the beam PDE and establish
its properties. Using the flatness technique, we solve the
motion planning problem of finding a control input which
will transfer the semi-discrete system from one steady state
to another over a prescribed time interval. Finally, we show
that a control input which solves the motion planning
problem for the beam PDE can be obtained as the limit of
a certain sequence of control inputs which solve the motion
planning problem for a sequence of semi-discrete systems of
increasing order. We remark that motion planning problems
for Euler-Bernoulli beams with other boundary conditions
have been solved by applying the flatness technique directly
to the beam PDEwithout discretizing it, see for instance [16],
[17], [18], [19], [20], and the same direct approach can
potentially be used to solve the problem considered in this
paper. However, our goal in this work is to explore whether
and how early lumping approach can be used to solve
this problem; This will provide insights for applying the
early lumping approach to solve motion planning problems
for more complex PDEs (higher-dimensional PDEs and
nonlinear PDEs) when it is difficult to apply the flatness
technique directly.

The main contributions of this paper are as follows: (i)
We have derived an nth-order semi-discrete approximation
for the beam PDE using the finite-difference scheme and
established its salient properties. Using these properties we
have shown that the solution of the nth-order semi-discrete
system converges to the solution of the PDE as n tends to
infinity. While we have proved this convergence for special
initial states and inputs as needed in this work, the ideas in
our proof can be adapted to establish the convergence for a
larger class of initial states and inputs. (ii)We have shown that
the motion planning problem considered in this work can be
addressed via the early lumping approach. More specifically,
we parameterize the inputs which solve the motion planning
problem for the nth-order semi-discrete system in terms of
certain coefficients. We show that these coefficients converge
to a limit as n tends to infinity and using these limits we find
the input which solves the motion planning problem for the

beam PDE. We remark that the semi-discrete approximation
scheme that we have introduced can potentially form the basis
for solving other control problems (different from motion
planning) via the early lumping approach.

While proving that the solution to the nth-order semi-
discrete approximation of the PDE converges to the solution
of the PDE (contribution (i) mentioned in the previous
paragraph), we allow the flexural rigidity EI of the beam to
be spatially varying, i.e. we consider a nonuniform beam.
However, while proving that the control inputs derived for
the semi-discrete systems converge to a control input which
solves themotion planning problem for the PDE (contribution
(ii) mentioned in the previous paragraph) we suppose that
EI is constant, i.e. we consider a uniform beam. We remark
that the control inputs derived for the semi-discrete systems
converge to a control input which solves the motion planning
problem for the PDE even when the beam is nonuniform, and
we have demonstrated this numerically in this paper.We hope
to establish this theoretically in a future work.

A preliminary and abridged version of some of the results
presented in this paper have appeared (without proofs) in
our conference paper [21] which considered Euler-Bernoulli
beams with hinged boundary conditions. While the solution
to the motion planning problem in [21] required two inputs,
the solution in this paper requires only one input which is
a significant improvement. Furthermore, this paper contains
stronger claims supported by complete proofs.

The rest of the paper is organized as follows. Section II
introduces the PDE model for the beam and the motion
planning problem addressed in this work. In Section III we
present our semi-discrete approximation for the nonuniform
beam PDE. Our solutions to the motion planning problem
for the semi-discrete system and the uniform beam PDE are
presented in Sections IV and V, respectively. These sections
also contain numerical illustrations of our theoretical results.
In Section VI we demonstrate using a numerical example that
our approach to solving the motion planning problem is also
applicable to nonuniform beams. Finally, some concluding
remarks are presented in Section VII. The notations used in
this paper are introduced below.

Notations: LetH k (0, 1) denote the usual Sobolev space of
order k ≥ 1 with the standard inner product. The space of
continuous and k-times continuously differentiable functions
from an interval [a, b] to a Hilbert space X are denoted by
C([a, b];X ) andCk ([a, b];X ), respectively, and they are both
Banach spaces with the usual norm. The set of functions
which belong to Ck ([a, b];X ) for every k ≥ 0 is denoted
by C∞([a, b];X ). We write Ck [a, b] instead of Ck ([a, b]; R)
and C∞[a, b] instead of C∞([a, b]; R). The mth derivative of
a function y ∈ C∞([a, b];X ) is written as y(m). A function
y ∈ C∞[0,T ] is said to be a Gevrey function of order s > 0 if
it satisfies the estimate supt∈[0,T ] |y

(m)(t)| ≤ Dm+1(m!)s for
all m ∈ N and some constant D > 0. We denote the set of all
functions satisfying these estimates by Gs[0,T ].
For any integer n > 1 and v ∈ Rn, we denote the

jth component of v by [v]j and define ∥v∥2d =
√
hv⊤v
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and ∥v∥∞ = max1≤i≤n |[v]i|. Here h = 1/(n − 1). The
discretization operator Rn : C[0, 1] → Rn is defined as
follows: for any z ∈ C[0, 1],Rnz = [z(0) z(h) · · · z(nh−h)]⊤.

II. BEAM MODEL, SOLUTION AND PROBLEM STATEMENT
Consider the following model for a Euler-Bernoulli beam of
unit length which has sliding cantilever boundary conditions
at both the ends: For t ≥ 0,

wtt (x, t) + (EIwxx)xx(x, t) = 0 ∀ x ∈ (0, 1), (1)

wx(0, t) = 0, (EIwxx)x(0, t) = 0, (2)

wx(1, t) = 0, (EIwxx)x(1, t) = f (t). (3)

Here w(x, t) is the displacement of the beam at the location
x ∈ [0, 1] and time t ≥ 0, the strictly positive function
EI ∈ C4[0, 1] is the flexural rigidity of the beam and
f (t) is the input force acting on the cantilever joint at
x = 1. A schematic depicting the beam and the boundary
conditions is shown in Figure 1. Let T > 0. A function
w ∈ C2([0,T ];L2(0, 1))∩C([0,T ];H4(0, 1)) is said to be a
solution of the above beam model if it satisfies (1) for each
t ∈ [0,T ] and almost every x ∈ (0, 1) and satisfies (2)-(3) for
each t ∈ [0,T ] and some input f ∈ C[0,T ]. We introduce the
semigroup associated with (1)-(3) in the next paragraph and
then present an expression for the solutions of (1)-(3) using
this semigroup. The motion planning problem addressed in
this paper is introduced at the end of this section.

The differential operator associated with the PDE (1)-(3)
is P : L2(0, 1) 7→ L2(0, 1) whose domain is

D(P) =

{
u ∈ H4(0, 1)

∣∣ux(0) = (EIuxx)x(0) = 0,

ux(1) = (EIuxx)x(1) = 0}

and Pw = (EIwxx)xx for all w ∈ D(P). It follows via
integration by parts that the operator P is self adjoint and
non-negative. So P + I (where I is the identity operator on
L2(0, 1)) is self-adjoint and positive (coercive) and D(P) =

D(P + I ). Let (P + I )
1
2 be the unique positive square root of

P + I . Consider the space Z = D((P + I )
1
2 )× L2(0, 1) with

the inner product

⟨z1, z2⟩Z = ⟨(P + I )
1
2 u1, (P + I )

1
2 u2⟩L2 + ⟨v1, v2⟩L2 (4)

for all z1 = [u1 v1]⊤ ∈ Z and z2 = [u2 v2]⊤ ∈ Z . The norm
on Z induced by this inner product is

∥z∥2Z = ∥(P + I )
1
2 u∥2L2 + ∥v∥2L2 ∀ z =

[
u
v

]
∈ Z . (5)

Then Z is a Hilbert space and the operator[
0 I

−P − I 0

]
(6)

with domain D(P) ×D((P + I )
1
2 ) ⊂ Z is the generator of a

strongly continuous semigroup on Z , see [22, Example 2.2.5].
Hence the operator

A =

[
0 I

−P 0

]
,

which differs from the operator in (6) by a bounded
perturbation, also has domainD(A) = D(P)×D((P+I )

1
2 ) ⊂

Z and is the generator of a strongly continuous semigroup T
on Z . Belowwe present an expression for the solutions of (1)-
(3) in terms of T, see (15).
Let µ ∈ C∞[0, 1] be such that

µx(0) = (EIµxx)x(0) = µx(1) = 0, (EIµxx)x(1) = 1. (7)

Fix T > 0 and input f ∈ C∞[0,T ] such that

f (0) = ḟ (0) = 0. (8)

Define

w̃(x, t) = w(x, t) − µ(x)f (t) ∀ x ∈ [0, 1], t ∈ [0,T ].

(9)

Substituting w = w̃+µf in (1)-(3) we get that w̃ satisfies the
following PDE: For t ∈ [0,T ],

w̃tt (x, t) + (EIw̃xx)xx(x, t) + (EIµxx)xx(x)f (t)

+ µ(x)f̈ (t) = 0 ∀x ∈ (0, 1),

(10)

w̃x(0, t) = 0, (EIw̃xx)x(0, t) = 0, (11)

w̃x(1, t) = 0, (EIw̃xx)x(1, t) = 0. (12)

Denote w(·, t) by w(t) and w̃(·, t) by w̃(t). The above PDE
can be rewritten as an abstract evolution equation on the state
space Z as follows: For t ∈ [0,T ],[

w̃t (t)
w̃tt (t)

]
= A

[
w̃(t)
w̃t (t)

]
+ F(t), (13)

whereF = [0 −(EIµxx)xx f −µf̈ ]⊤ ∈ C∞([0,T ];Z ). Given
an initial state [u v]⊤ ∈ D(A), we can apply the regularity
result [22, Theorem 3.1.3] to (13) and conclude that w̃ given
by the variation of constants formula[

w̃(t)
w̃t (t)

]
= Tt

[
u
v

]
+

∫ t

0
TτF(t − τ )d τ ∀ t ∈ [0,T ] (14)

belongs to C2([0,T ];L2(0, 1)) ∩ C([0,T ];H4(0, 1)), it sat-
isfies (10) for each t ∈ [0,T ] and almost every x ∈ (0, 1),
it satisfies (11)-(12) for each t ∈ [0,T ], and w̃(0) = u and
w̃t (0) = v. Using this, the relationship betweenw and w̃ in (9)
and the properties of µ and f in (7)-(8) we can conclude via
a simple calculation that w defined as[

w(t)
wt (t)

]
= Tt

[
u
v

]
+

∫ t

0
TτF(t − τ )d τ +

[
µf (t)
µḟ (t)

]
(15)

for all t ∈ [0,T ] belongs to C2([0,T ];L2(0, 1)) ∩

C([0,T ];H4(0, 1)), it satisfies (1) for each t ∈ [0,T ] and
almost every x ∈ (0, 1), it satisfies (2)-(3) for each t ∈ [0,T ],
and w(0) = u and wt (0) = v. In other words, w given by (15)
is the solution of (1)-(3) corresponding to the initial state
[u v]⊤ and input f . In the next proposition wewill show under
certain additional hypothesis on the initial state and input that
w ∈ C∞([0,T ];C5[0, 1]).
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Proposition 1. Fix T > 0. Suppose that the initial state
[u v]⊤ ∈ D(A∞) and the input f ∈ C∞[0,T ] with

f (k)(0) = 0 ∀ k ≥ 0. (16)

Then the solution w of the PDE (1)-(3), corresponding
to this initial state and input, given by (15) belongs to
C∞([0,T ];C5[0, 1]).

Proof:Using (16) in the definition ofF given below (13)
we get that F ∈ C∞([0,T ];Z ) and

F (k)(0) = 0 ∀ k ≥ 0. (17)

Differentiating (15) k-times with respect to time and then
using (17) and the definition of F we get[

w(k)(t)
w(k+1)(t)

]
= TtAk

[
u
v

]
+

∫ t

0
TτF (k)(t − τ )d τ

+

[
µf (k)(t)
µf (k+1)(t)

]
(18)

for all t ∈ [0,T ] and k ≥ 0. The three terms on the right side
of the above expression resemble the three terms on the right
side of (15) (with Ak [u v]⊤ ∈ D(A) instead of [u v]⊤ ∈

D(A), F (k)
∈ C∞([0,T ];Z ) instead of F ∈ C∞([0,T ];Z )

and f (k) ∈ C∞[0,T ] instead of f ∈ C∞[0,T ]). Therefore
via the reasoning that enabled us to conclude that w given
in (15) belongs to C([0,T ];H4(0, 1)), we get that w(k) given
in (18) belongs to C([0,T ];H4(0, 1)). Since this is true for
all integers k ≥ 0 we have

w ∈ C∞([0,T ];H4[0, 1]). (19)

Now since w satisfies (1), i.e. (EIwxx)xx(t) = −wtt (t) for
each t ∈ [0,T ], we can conclude using (19) that EIwxx ∈

C∞([0,T ];H6[0, 1]) which together with EI ∈ C4[0, 1]
implies that w ∈ C∞([0,T ];C5[0, 1]). This completes the
proof. □

A steady state of the PDE (1)-(3) is a vector [u v]⊤ ∈ D(A)
such that

A
[
u
v

]
= 0.

Using the definition of A and D(A) it is easy to see that all
the steady states of (1)-(3) are of the form [u 0]⊤, where u is a
constant function on the interval [0, 1]. Suppose that [w0 0]⊤

is a steady state of A, then

Tt

[
w0
0

]
=

[
w0
0

]
∀ t ≥ 0. (20)

We say that f transfers (1)-(3) from [u0 v0]⊤ to [uT vT ]⊤

over the time interval [0,T ] if the solution w of (1)-(3) for the
initial state [u0 v0]⊤ and input f satisfies [w(T ) wt (T )]⊤ =

[uT vT ]⊤. In this paper, given T > 0 and steady states
[w0 0]⊤ and [wT 0]⊤, we are interested in the problem of
finding an input f ∈ C∞[0,T ] which transfers (1)-(3) from
[w0 0]⊤ to [wT 0]⊤ over the time interval [0,T ]. However,
we will assume that the initial state is zero and then address
this problem. This does not lead to any loss of generality since

if f transfers (1)-(3) from the zero state to [wT − w0 0]⊤

over the time interval [0,T ], then using (20) and (15) it is
easy to verify that the same f transfers (1)-(3) from [w0 0]⊤

to [wT 0]⊤ over the time interval [0,T ]. To summarize we
address the following problem in this paper:

Problem 1. Given T > 0 and a steady state [wT 0]⊤ of the
PDE (1)-(3), find an input f ∈ C∞[0,T ] which transfers the
PDE from the zero state to [wT 0]⊤ over the time interval
[0,T ].

In Section V we prove that there is a solution to the above
problem for any T > 0 and any steady state [wT 0]⊤ when
EI is a constant. Using a numerical example we demonstrate
in Section VI that our solution is also applicable when EI is
spatially varying.

Remark 1. Suppose that EI is a constant in the
Euler-Bernoulli beam PDE with sliding cantilever boundary
conditions (1)-(3). Then the change of variable u = wx
transforms (1)-(3) to a beam PDE with hinged boundary
conditions, and motion planning for such beams has been
considered in [9]. Under this transformation all the steady
states of the sliding cantilever beam are mapped to the
zero function, and so Problem 1 cannot be addressed by
reformulating it as a motion planning problem for the
transformed hinged beam.

III. FINITE-DIFFERENCE SEMI-DISCRETIZATION
In this section we derive a semi-discrete approximation for
the PDE (1)-(3) by replacing the spatial derivatives in (1)-
(3) with their finite-difference approximations. We then
show that the solution of the semi-discrete approximation
converges to the solution of the PDE as the discretization step-
size converges to zero.

Consider a function w ∈ C2([0,T ];C5[0, 1]) which
satisfies the PDE (1)-(3). Let h = 1/(n − 1), where n ≥ 5 is
an integer. Then for each j ∈ {2, 3, . . . n − 3} we get using
Taylor’s theorem that

(EIwxx)xx(jh, t)

= EI (jh− h)
w(jh− 2h, t) − 2w(jh− h, t) + w(jh, t)

h4

− 2EI (jh)
w(jh− h, t) − 2w(jh, t) + w(jh+ h, t)

h4

+ EI (jh+ h)
w(jh)−2w(jh+ h)+w(jh+ 2h)

h4
+O(jh, t),

where O(jh, t) satisfies the bound

sup
t∈[0,T ]

|O(jh, t)| ≤ Kh sup
t∈[0,T ]

∥w(·, t)∥C5[0,1] (21)

for some K > 0 independent of h, j and w. Using Taylor’s
theorem again, along with the boundary conditions (2)-(3),
we get the following expressions for (EIwxx)xx(jh, t) for j ∈

{0, 1, n− 2, n− 1}:

(EIwxx)xx(0, t) = EI (h)
w(0, t) − 2 w(h, t) + w(2h, t)

h4
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−

(
EI (0) +

hEIx(0)
3

)
2w(h, t) − 2w(0, t)

h4
+O(0, t),

(EIwxx)xx(h, t) = EI (2h)
w(h, t) − 2 w(2h, t) + w(3h, t)

h4

− 2EI (h)
w(0, t) − 2 w(h, t) + w(2h, t)

h4

+

(
EI (0) +

hEIx(0)
3

)
2w(h, t) − 2w(0, t)

h4
+O(h, t).

(EIwxx)xx(nh− 2h, t)

= EI (1−2h)
w(nh−4h, t) − 2 w(nh−3h, t) + w(nh−2h, t)

h4

− 2EI (1−h)
w(nh−3h, t)−2 w(nh−2h, t)+w(nh−h, t)

h4

+

(
EI (1) −

hEIx(1)
3

)
2w(nh− 2h, t) − 2w(nh− h, t)

h4

+
f (t)
3h

+O(nh− h, t).

(EIwxx)xx(nh− h, t)

= EI (1−h)
w(nh−h, t) − 2 w(nh−2h, t) + w(nh−3h, t)

h4

−

(
EI (1) −

hEIx(1)
3

)
2w(nh− 2h, t) − 2w(nh− h, t)

h4

+
2f (t)
3h

+O(nh− 2h, t).

Here O(jh, t) satisfies the following bound:

sup
t∈[0,T ]

|O(jh, t)| ≤ K sup
t∈[0,T ]

∥w(·, t)∥C5[0,1] (22)

for j ∈ {0, 1, n − 2, n − 1} and some K > 0 independent of
h, j and w. Let

vn =
[
w(0, t) w(h, t) · · · w(nh− h, t)

]⊤
.

From (1) it follows that

v̈n(t)=−
[
(EIwxx)xx(0, t) · · · (EIwxx)xx(nh− h, t)

]⊤
.

Substituting the expressions derived earlier for (EIwxx)xx
(jh, t) in to the above equation we get

v̈n(t) = −Pnvn(t) + Bnf (t) +On(t), (23)

where the jth entry of On(t) ∈ Rn is −O(jh − h, t) and the
matrices Pn ∈ Rn×n and Bn ∈ Rn are as given below: Pn =

L⊤
n EnLn where

Ln=
1
h2



−
√
2

√
2 0 · · · · · · · · · 0

1 −2 1 0 · · · · · · 0
0 1 −2 1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 1 −2 1 0
0 · · · · · · 0 1 −2 1
0 · · · · · · · · · 0

√
2 −

√
2


,

(24)

En = diag
[
EI (0) +

hEIx (0)
3 EI (h) · · · EI (1 − h) EI (1) −

hEIx (1)
3

]
,

Bn =
1
h

[
0 0 · · · −

1
3 −

2
3

]⊤
.

Dropping the correction termOn from (23) and then writing it
as a first-order equationwe obtain the following semi-discrete
approximation for (1)-(3) when the input f = fn:[
v̇n(t)
v̈n(t)

]
= An

[
vn(t)
v̇n(t)

]
+

[
0
Bn

]
fn(t) ∀ t ≥ 0, (25)

where

An =

[
0 I

−Pn 0

]
. (26)

Observe that the first and the last entries of the matrix En
defined below (24) are larger than a strictly positive constant
independent of n for all n sufficiently large. We will assume
that this is true for all n to simplify our presentation. Dropping
this assumption will not affect any of our results since we are
only concerned with the solutions of (25) as n → ∞.
The following lemma summarizes the accuracy of the

Taylor’s theorem based finite-difference approximations
presented above in a form that is subsequently used in this
paper. Recall h = 1/(n − 1), the discretization operator Rn,
and the norm ∥ · ∥2d from the notations in Section I.

Lemma 1. Fix T > 0. Suppose that ξ ∈ C([0,T ];C5[0, 1])
satisfies ξx(0, t) = 0, (EIξxx)x(0, t) = 0 and ξx(1, t) = 0.
Define fξ (t) = (EIξxx)x(1, t). Then there exists a constant
c > 0 independent of n and ξ such that

sup
t∈[0,T ]

∥Rn(EIξxx)xx(·, t) − PnRnξ (·, t) + Bnfξ (t)∥2d

≤ c
√
h sup
t∈[0,T ]

∥ξ (·, t)∥C5[0,1] (27)

for all n ≥ 5.

Proof: For a vector v ∈ Rn, recall that [v]j denote its jth

component. From the expressions above (21) and (22) (with
ξ in place of w) and the definitions of the matrices Pn and Bn
we get

[Rn(EIξxx)xx(·, t) − PnRnξ (·, t) + Bnfξ (t)]j+1 = O(jh, t)

(28)

for j ∈ {0, 1, . . . n − 1} and from (21) and (22) we get that
there exists a constant K > 0 independent of h, j and ξ such
that

sup
t∈[0,T ]

|O(jh, t)| ≤ Kh sup
t∈[0,T ]

∥ξ (·, t)∥C5[0,1] (29)

for j ∈ {2, 3, . . . n− 3} and

sup
t∈[0,T ]

|O(jh, t)| ≤ K sup
t∈[0,T ]

∥ξ (·, t)∥C5[0,1] (30)

for j ∈ {0, 1, n− 2, n− 1}. The estimate in (27) now follows
immediately from (28)-(30) and the definition of ∥ · ∥2d . □

The next lemma presents a type of discrete Sobolev
inequality needed in the proof of our convergence result
Theorem 2.
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Lemma 2. For each ϵ > 0, there exists an N (ϵ) >

0 independent of n such that

∥v∥2∞ ≤ ϵ∥Lnv∥22d + N (ϵ)∥v∥22d ∀ v ∈ Rn. (31)

Proof: From [13, Eq. (3.19)] we get that for each ϵ > 0,
there exists a C(ϵ) > 0 independent of n such that

∥v∥2∞ ≤ ϵ

n−1∑
i=1

([v]i+1 − [v]i)2

h
+ C(ϵ)∥v∥22d ∀ v ∈ Rn.

(32)

Recall that [v]i denotes the ith-component of the vector v.
(Note that [13, Eq. (3.19)] is in terms of ∥·∥

2
2 while the above

equation is in terms of ∥ · ∥
2
2d and ∥ · ∥

2
2d = h∥ · ∥

2
2.)

Consider the diagonal matrix

0n = diag
[

1
√
2
1 · · · 1 1

√
2

]
∈ Rn×n.

A simple calculation using the definition of Ln gives

n−1∑
i=1

([v]i+1 − [v]i)2

h
= −hv⊤0nLnv

Bounding the term −hv⊤0nLnv on the right-side of the
above equation using the Cauchy-Schwartz inequality and the
Young’s inequality we get

n−1∑
i=1

([v]i+1 − [v]i)2

h
≤ ∥Lnv∥22d + ∥v∥22d .

The estimate (31) now follows from (32) and the above
inequality. □
For the semi-discrete system (25), we take the state space

to be Zd = Rn
× Rn with the following inner product:〈[

u1
u2

]
,

[
v1
v2

]〉
Zd

= hu⊤

1 v1 + hu⊤

1 L
⊤
n EnLnv1 + hu⊤

2 v2

for all [u1 u2]⊤ ∈ Zd and [v1 v2]⊤ ∈ Zd . So the norm of
[u1 u2]⊤ ∈ Zd is∥∥∥∥[u1u2

]∥∥∥∥2
Zd

= ∥u1∥22d + ∥E1/2
n Lnu1∥22d + ∥u2∥22d . (33)

Recall An from (26) for n ≥ 5, and Pn = L⊤
n EnLn from

above (24). It is easy to see that〈
An

[
u1
u2

]
,

[
u1
u2

]〉
Zd

= hu⊤

2 u1 ≤
1
2

∥∥∥∥[u1u2
]∥∥∥∥2

Zd

for all [u1 u2]⊤ ∈ Zd . Let A∗
n be the adjoint of An. Then

for each z ∈ Zd we have ⟨A∗
nz, z⟩Zd = ⟨z,Anz⟩Zd by

definition and ⟨z,Anz⟩Zd = ⟨Anz, z⟩Zd since the inner product
is symmetric. So ⟨A∗

nz, z⟩Zd = ⟨Anz, z⟩Zd . Using this and the
above inequality, it follows from [22, Corollary 2.2.3] that

∥eAnt∥ ≤ e
t
2 ∀ t ≥ 0, ∀ n ≥ 5. (34)

In the above estimate, ∥eAnt∥ is the matrix norm of eAnt

induced by the norm on Zd .

The following theorem is the main result of this section.
It shows that when the initial state of the PDE (1)-(3) is zero
and the input satisfies certain smoothness assumptions, the
solution of the nth-order semi-discrete approximation (25)
converges pointwise to the solution of the PDE (1)-(3) as
n → ∞. We remark that the ideas in the proof of this
theorem can be adapted to establish convergence results under
milder hypothesis on the initial state and input. Recall the
discretization operator Rn from the notations in Section I.

Theorem 2. Fix T > 0. Consider a function f ∈ C∞[0,T ]
and a sequence of functions {fn}n≥0 in C∞[0,T ] satisfying
f (k)(0) = f (k)n (0) = 0 for all k ≥ 0 and

lim
n→∞

∥fn − f ∥C4[0,T ] = 0. (35)

Let w be the solution of (1)-(3) on the interval [0,T ] with
the initial state w(·, 0) = 0, wt (·, 0) = 0 and input f . For
n ≥ 5, let

[ vn
v̇n

]
be the solution of the nth-order semi-discrete

system (25) on the interval [0,T ] with zero initial state and
input fn. Then

lim
n→∞

sup
t∈[0,T ]

∥∥∥∥[Rnw(·, t)Rnwt (·, t)

]
−

[
vn(t)
v̇n(t)

]∥∥∥∥
∞

= 0. (36)

Proof: From Proposition 1 we get that the solution w
of the PDE (1)-(3) corresponding to zero initial state and
input f belongs to C∞([0,T ];C5[0, 1]) and it satisfies (1)-
(3) pointwise.
Let µ ∈ C∞[0, 1] be the function defined above (7).

Define the error to be

en(t) = Rnw(·, t) − vn(t) − Rnµ[f (t) − fn(t)].

For t ∈ [0,T ], using (1) and (25), we can compute that[
ėn(t)
ën(t)

]
=

[
0 I

−Pn 0

] [
en(t)
ėn(t)

]
+

[
0
δn(t)

]
, (37)[

en(0)
ėn(0)

]
=

[
0
0

]
, (38)

where δn(t) = δ1n(t) + δ2n(t) + δ3n(t) with

δ1n(t) = PnRnw(·, t) − Rn(EIwxx)xx(·, t) − Bnf (t),

δ2n(t) = (PnRnµ− Bn)[fn(t) − f (t)],

δ3n(t) = [f̈n(t) − f̈ (t)]Rnµ.

The solution of (37)-(38) is[
en(t)
ėn(t)

]
=

∫ t

0
eAnτ

[
0

δn(t − τ )

]
d τ. (39)

Sincew(·, 0) = 0, f (0) = f̈ (0) = 0 and fn(0) = f̈n(0) = 0 (see
the theorem statement), it follows from the definition of δn
that δn(0) = 0. Differentiating the above equation and using
δn(0) = 0 we get[

ėn(t)
ën(t)

]
=

∫ t

0
eAnτ

[
0

δ̇n(t − τ )

]
d τ. (40)
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Using the estimate in (34) to bound the right-side of (39)
and (40) we get that

sup
t∈[0,T ]

(∥∥∥∥[en(t)ėn(t)

]∥∥∥∥
Zd

+

∥∥∥∥[ėn(t)ën(t)

]∥∥∥∥
Zd

)

≤ K sup
t∈[0,T ]

(∥∥∥∥[ 0
δn(t)

]∥∥∥∥
Zd

+

∥∥∥∥[ 0
δ̇n(t)

]∥∥∥∥
Zd

)
(41)

for some constant K independent of n. Next we derive certain
estimates for δn and δ̇n which can be used along with (41) to
complete the proof of this theorem.

Recall δn, δ1n , δ
2
n and δ3n introduced below (38). Since w

satisfies all the hypothesis imposed on ξ in Lemma 1 with
(EIwxx)x(1, t) = f (t) (see the beginning of this proof), we can
conclude by applying the lemma to w that

lim
n→∞

sup
t∈[0,T ]

∥δ1n(t)∥2d = 0. (42)

Differentiating the expression for δ1n we get δ̇1n(t) =

PnRnwt (·, t)−Rn(EIwtxx)xx(·, t)−Bn ḟ (t). The regularity of w
implies that wt also satisfies all the hypothesis imposed on ξ
in Lemma 1 with (EIwtxx)x(1, t) = ḟ (t). So we can conclude
by applying the lemma to wt that

lim
n→∞

sup
t∈[0,T ]

∥δ̇1n(t)∥2d = 0. (43)

Let us denote the constant (in time) function belonging
to C∞([0,T ];C5[0, 1]) whose value at each time instant
t ∈ [0,T ] is µ, also by µ. Then µ satisfies all the
hypothesis imposed on ξ in Lemma 1 with (EIµxx)x(1, t) =

1 and we can conclude by applying the lemma to µ that
limn→∞ ∥PnRnµ−Rn(EIµxx)xx − Bn∥2d = 0. From this and
the fact that ∥Rn(EIµxx)xx∥2d can be bounded by a constant
which depends only on maxx∈[0,1] |(EIµxx)xx(x)|, it follows
that ∥PnRnµ − Bn∥2d < C for some C > 0 independent of
n. Using this and the limit (35) gives

lim
n→∞

sup
t∈[0,T ]

∥δ2n(t)∥2d = lim
n→∞

sup
t∈[0,T ]

∥δ̇2n(t)∥2d = 0. (44)

Finally from (35) and the fact that ∥Rnµ∥2d can be bounded
by a constant which depends only onmaxx∈[0,1] |µ(x)|, we get

lim
n→∞

sup
t∈[0,T ]

∥δ3n(t)∥2d = lim
n→∞

sup
t∈[0,T ]

∥δ̇3n(t)∥2d = 0. (45)

Combining the limits in (42)-(45) and recalling the definition
of ∥ · ∥Zd from (33) we obtain

lim
n→∞

sup
t∈[0,T ]

∥∥∥∥[ 0
δn(t)

]∥∥∥∥
Zd

= lim
n→∞

sup
t∈[0,T ]

∥∥∥∥[ 0
δ̇n(t)

]∥∥∥∥
Zd

= 0.

(46)

We will now complete the proof of this theorem. From the
estimate in (41) and the limits in (46) it is easy to conclude
that

lim
n→∞

sup
t∈[0,T ]

∥∥∥∥[en(t)ėn(t)

]∥∥∥∥
Zd

= lim
n→∞

sup
t∈[0,T ]

∥∥∥∥[ėn(t)ën(t)

]∥∥∥∥
Zd

= 0.

The above limits together with the definition of ∥ · ∥Zd given
in (33) imply that

lim
n→∞

sup
t∈[0,T ]

∥en(t)∥2d = lim
n→∞

sup
t∈[0,T ]

∥E1/2
n Lnen(t)∥2d = 0,

lim
n→∞

sup
t∈[0,T ]

∥ėn(t)∥2d = lim
n→∞

sup
t∈[0,T ]

∥E1/2
n Lnėn(t)∥2d = 0,

Since En is a diagonal matrix whose entries are larger than a
strictly positive constant independent of n we can rewrite the
above limits as follows:

lim
n→∞

sup
t∈[0,T ]

∥en(t)∥2d = lim
n→∞

sup
t∈[0,T ]

∥Lnen(t)∥2d = 0,

lim
n→∞

sup
t∈[0,T ]

∥ėn(t)∥2d = lim
n→∞

sup
t∈[0,T ]

∥Lnėn(t)∥2d = 0,

The above limits then in turn imply, via Lemma 2, that

lim
n→∞

sup
t∈[0,T ]

∥en(t)∥∞ = lim
n→∞

sup
t∈[0,T ]

∥ėn(t)∥∞ = 0.

The limit in (36) now follows from the above limits, the
definitions of en(t) and ėn(t) and the limit in (35). □

IV. MOTION PLANNING FOR THE SEMI-DISCRETE
APPROXIMATION WITH CONSTANT EI
In this section we assume that the flexural rigidity EI of the
beam is a constant. Without loss of generality we take EI =

1 so that En is the n× n identity matrix.
A steady-state of the finite-dimensional semi-discrete

system (25) is any vector vss ∈ R2n which satisfies Anvss = 0.
Suppose that vss =

[ v1,ss
v2,ss

]
with v1,ss, v2,ss ∈ Rn. Then from

the definition of An in (26) it follows that

Anvss = 0 ⇐⇒ Pnv1,ss = 0, v2,ss = 0.

Recall that Pn = L⊤
n EnLn = L⊤

n Ln, where Ln is defined
in (24). Therefore Pnv1,ss = 0 implies that L⊤

n Lnv1,ss = 0,
which in turn implies that v⊤1,ssL

⊤
n Lnv1,ss = 0 or equivalently

that Lnv1,ss = 0. From the definition of Ln, it is easy to see
that Lnv1,ss = 0 if and only if

v1,ss =
[
α α · · · α

]⊤ for some α ∈ R. (47)

Therefore the steady states of (25) are all vectors of the form[ v1,ss
0

]
, where v1,ss ∈ Rn is as given in (47). In this section,

we present an algorithm for finding an input fn which transfers
the finite-dimensional semi-discrete system (25) from the
zero state to any other steady state over the time interval [0,T ]
for some T > 0. Throughout this section, we suppose that
n ≥ 5.
Wewill now rewrite the semi-discrete system (25) in a form

useful for finding an input fn which transfers (25) between
the given steady states. Observe that (25) can equivalently be
written as

v̈n(t) = −Pnvn(t) + Bnfn(t) ∀ t ≥ 0, (48)

which is a collection of n scalar differential equations.
By rearranging the terms in each of these equations we obtain
the following set of n equations which are equivalent to (25):

[vn]3 = −h4[v̈n]1 − 3[vn]1 + 4[vn]2, (49)
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[vn]4 = −h4[v̈n]2 + 4[vn]1 − 7[vn]2 + 4[vn]3, (50)

[vn]j+2 = −h4[v̈n]j − [vn]j−2 + 4[vn]j−1 − 6[vn]j
+4[vn]j+1 ∀ j∈{3, 4, . . . n− 2},

(51)

h4[v̈n]n−1 = −[vn]n−3 + 4[vn]n−2 − 7[vn]n−1

+ 4[vn]n −
h3fn
3
, (52)

h4[v̈n]n = −[vn]n−2 + 4[vn]n−1 − 3[vn]n −
2h3fn
3

, (53)

Here [vn]j denotes the jth-component of vn and we have
suppressed the time argument for the sake of brevity.
Equations (52) and (53) can be equivalently written as

fn =
1
h3
([vn]n − 3[vn]n−1 + 3[vn]n−2 − [vn]n−3)

− h([v̈n]n + [v̈n]n−1), (54)

0 =
1
6h
(11[vn]n − 18[vn]n−1 + 9[vn]n−2 − 2[vn]n−3)

+
h3

6
([v̈n]n − 2[v̈n]n−1). (55)

Note that (54) is obtained by adding (52) and (53) and (55) is
obtained by eliminating fn from (52) and (53).
Next we derive a parametrization of vn and fn in (48) in

terms of two functions y1 and y2 and their even derivatives.
Define

y1 = [vn]1, y2 = 2
[vn]2 − [vn]1

h2
(56)

so that [vn]1 = y1 and [vn]2 = y1 + h2y2
/
2. Using these

expressions for [vn]1 and [vn]2 and (49) we can express
[vn]3 as a linear combination of y1, y2 and their even
derivatives as follows:

[vn]3 = y1 − h4y(2)1 + 2 h2y2. (57)

Similarly using the above expressions for [vn]1, [vn]2 and
[vn]3 and (50) we can express [vn]4 as a linear combination
of y1, y2 and their even derivatives as follows:

[vn]4 = y1 − 5 h4y(2)1 +
9
2
h2y2 −

1
2
h6y(2)2 . (58)

Repeating the above procedure successively for j =

3, 4, . . . n − 2, i.e. using the expressions for [vn]j−2, [vn]j−1,
[vn]j and [vn]j+1 and (51) to express [vn]j+2 as a linear
combination of y1, y2 and their even derivatives, we obtain
the following set of expressions: For j ∈ {1, 2, . . . n},

[vn]j =

⌊
j−1
2 ⌋∑

k=0

[
pj,kh4ky

(2k)
1 + qj,kh4k+2y(2k)2

]
. (59)

Here ⌊c⌋ denotes the largest integer less than or equal to
c ∈ R and pj,k and qj,k are some real coefficients. Finally,
substituting the expressions for [vn]n, [vn]n−1, [vn]n−2 and

[vn]n−3 obtained from (59) in (54) and (55) we can rewrite
(54) and (55) as

fn =

⌊
n+1
2 ⌋∑

k=0

[
an,ky

(2k)
1 + bn,ky

(2k)
2

]
, (60)

0 =

⌊
n+1
2 ⌋∑

k=0

[
cn,ky

(2k)
1 + dn,ky

(2k)
2

]
, (61)

where an,k , bn,k , cn,k and dn,k are some real coefficients.
Expressions (59)-(61) are the desired parametrization of vn
and fn in terms of y1 and y2.

Choose y1, y2 ∈ C∞[0,T ] which satisfy (61). Then [vn]j
for j ∈ {1, 2, . . . n} and fn defined using (59) and (60)
also belong to C∞[0,T ] and they satisfy (49)-(55). (This is
because the parametrization (59)-(61) has essentially been
derived by solving (49)-(55) successively.) Therefore vn and
fn determined by the chosen y1 and y2 satisfy (25) for t ∈

[0,T ]. In other words,
[ vn
v̇n

]
defined using (59) is the solution

of (25) on the interval [0,T ] corresponding to the input fn
defined using (60) and initial state

[
vn(0)
v̇n(0)

]
defined using (59).

The following remark gives the formula for some of the
coefficients appearing in the parametrization.

Remark 2. For integers 0 ≤ m ≤ l, the binomial coefficient
is (

l
m

)
=

l!
m!(l − m)!

. (62)

When m > l or m < 0, we take(
l
m

)
= 0. (63)

Recall the coefficients pj,k and qj,k from (59). The formulae
for these coefficients are

pj,k = (−1)k
(
j+ 2k − 1

4k

)
, (64)

qj,k =
(−1)k

2

[(
j+ 2k − 1
4k + 2

)
+

(
j+ 2k
4k + 2

)]
, (65)

for all j ∈ {1, 2, . . . n} and k ∈ {0, 1, . . . ⌊(j− 1)/2⌋}, see
Section B in the Appendix for a proof. Recall cn,0 and dn,0
from (61). In Section D and Section E in the Appendix we
have shown that

cn,0 = 0, dn,0 = 1. (66)

The next theorem is the main result of this section.
It addresses the problem of finding a control input fn which
transfers (25) from the zero state to any other steady state over
the time interval [0,T ]. We will use the following function in
the theorem: For t ∈ [0,T ] define

ψ(t) =

( ∫ t

0
ψ0(τ )d τ

/∫ T

0
ψ0(τ )d τ

)
, (67)
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where the function ψ0 : [0,T ] → R is given as

ψ0(t)=

 exp

(
−

[(
1 −

t
T

)
t
T

]−2
)
, t ∈ (0,T )

0, t=0 or t=T

.

From [23] we get that ψ ∈ G1.5[0,T ] (i.e. ψ is a Gevrey
function of order 1.5) and

ψ(0) = 0, ψ(T ) = 1, ψ (k)(0) = ψ (k)(T ) = 0 (68)

for all integers k ≥ 1.

Theorem 3. Let T > 0 and a steady state
[ vT

0

]
of the semi-

discrete system (25) with vT = [α α · · · α]⊤ ∈ Rn be given.
Recallψ from (67). Define the functions y, y1, y2 ∈ C∞[0,T ]
as follows: For each t ∈ [0,T ], let y(t) = αψ(t) and

y1(t) =

⌊
n+1
2 ⌋∑
i=0

dn,iy(2i)(t), y2(t) = −

⌊
n+1
2 ⌋∑
i=0

cn,iy(2i)(t). (69)

Then the input fn ∈ C∞[0,T ] defined using (60) transfers
the semi-discrete system (25) from the zero state to the steady
state

[ vT
0

]
over the time interval [0,T ], i.e. the solution

[ vn
v̇n

]
of the semi-discrete system (25) with the initial state

[
0
0

]
and

input fn satisfies
[
vn(T )
v̇n(T )

]
=
[ vT

0

]
.

Proof: Via a simple substitution it is easy to check that
y1 and y2 defined in (69) satisfy (61). Hence

[ vn
v̇n

]
defined

using (59) is the solution of (25) on the interval [0,T ]
corresponding to the input fn ∈ C∞[0,T ] defined using (60)
and initial state

[
vn(0)
v̇n(0)

]
defined using (59) (see the discussion

above Remark 2). We will complete the proof of the theorem
by verifying that this solution

[ vn
v̇n

]
has the desired initial and

final states, i.e.[
vn(0)
v̇n(0)

]
=

[
0
0

]
and

[
vn(T )
v̇n(T )

]
=

[
vT
0

]
. (70)

From the properties of ψ in (68) we get that

y(0) = 0, y(T ) = α, y(k)(0) = y(k)(T ) = 0 ∀ k ≥ 1.

Using this in (69) and recalling (66) it follows that the
functions y1 and y2 satisfy

y1(0) = 0, y1(T ) = α, y(k)1 (0) = y(k)1 (T ) = 0 ∀ k ≥ 1,

y2(0) = 0, y2(T ) = 0, y(k)2 (0) = y(k)2 (T ) = 0 ∀ k ≥ 1.

Using the above conditions in (59) to determine the state of
the solution

[ vn
v̇n

]
at times t = 0 and t = T we get

[vn]j(0) = 0, [vn]j(T ) = αpj,0,

[v̇n]j(0) = 0, [v̇n]j(T ) = 0

for all j ∈ {1, 2, . . . , n}. Since pj,0 = 1, which follows by
taking k = 0 in (64), we get from the above conditions that
the solution

[ vn
v̇n

]
satisfy (70). This completes the proof of the

theorem. □

A. NUMERICAL SIMULATIONS
In this section we numerically illustrate our solution to the
motion planning problem described in Theorem 3. In our
simulations we take n = 8 and the goal is to transfer (25)
from the zero state to the steady state

[ vT
0

]
with vT =

[1 1 · · · 1]⊤ ∈ R8 over the time interval [0, 5]. We have
computed the control input fn required for this transfer by
following the procedure in the statement of the theorem.
Figures 2 and 3 show the solution

[ vn
v̇n

]
of (25) for this input

and zero initial state. As seen from the plots, the solution
starts at the zero state at 0 seconds and reaches the desired
steady state at 5 seconds.

FIGURE 2. The first component vn of the solution of (25) starts from
[0 0 · · · 0]⊤ ∈ R8 at 0 seconds and reaches [1 1 · · · 1]⊤ ∈ R8 at 5 seconds
as desired.

FIGURE 3. The second component v̇n of the solution of (25) starts from
[0 0 · · · 0]⊤ ∈ R8 at 0 seconds and goes back to [0 0 · · · 0]⊤ ∈ R8 at
5 seconds as desired.

V. MOTION PLANNING FOR THE BEAM PDE WITH
CONSTANT EI
In this section we take EI = 1 (like in Section IV) and present
our solution to the motion planning problem, Problem 1, for
the PDE (1)-(3) by building on our results in Sections III
and IV. More specifically, fix T > 0 and suppose that
[wT 0]⊤ is a steady state of (1)-(3) with wT (x) = α

for some α ∈ R and all x ∈ [0, 1]. Then
[ vT

0

]
, where

vT = [α α · · · α]⊤ ∈ Rn, is a steady state for the nth-
order semi-discrete system (25). Let fn be the control input
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in Theorem 3 which transfers (25) from the zero initial state
to the steady state

[ vT
0

]
over the time interval [0,T ]. Observe

that by substituting the expressions for y1 and y2 from (69)
into (60) we can write fn as

fn =

⌊
n+1
2 ⌋∑

k=0

⌊
n+1
2 ⌋∑
i=0

an,kdn,iy(2k+2i)

−

⌊
n+1
2 ⌋∑

k=0

⌊
n+1
2 ⌋∑
i=0

bn,kcn,iy(2k+2i), (71)

where y is as in Theorem 3. Define

an,k = bn,k = cn,k = dn,k = 0 ∀ k > ⌊(n+ 1)/2⌋. (72)

Using this and changing the order of the summations in (71)
we can rewrite fn as

fn =

∞∑
k=0

rn,ky(2k), (73)

where

rn,k =

∑
i+l=k
i,l≥0

(an,idn,l − bn,icn,l). (74)

In Proposition 4 we show that limn→∞ rn,k = rk for some
rk ∈ R and all k ≥ 0 and in Proposition 5 we derive
some bounds for rn,k and rk . Using these results we prove
in Proposition 6 that the sequence of control inputs {fn}∞n=5
converges to a limit f . In Theorem 7 we show that this f
transfers the PDE (1)-(3) from the zero initial state to the
steady state [wT 0]⊤ over the time interval [0,T ], i.e. f solves
Problem 1.

Proposition 4. For each k ≥ 0,

lim
n→∞

rn,k = rk (75)

for some rk ∈ R.

Proof: Observe that rn,k in (74) is given by a finite sum.
We claim that

lim
n→∞

an,0 = lim
n→∞

bn,0 = lim
n→∞

cn,0 = 0, lim
n→∞

dn,0 = 1,

(76)

and for each k ≥ 1

lim
n→∞

an,k =
(−1)k

(4k − 3)!
, lim

n→∞
bn,k =

(−1)k

(4k − 1)!
, (77)

lim
n→∞

cn,k =
(−1)k

(4k − 1)!
, lim

n→∞
dn,k =

(−1)k

(4k + 1)!
. (78)

From the limits in (76), (77), (78) and the definition of rn,k
in (74), the limit in (75) follows immediately for each k ≥ 0.
Wewill complete the proof of this proposition by establishing
the limits in (76)-(78).

For n ≥ 5 we have an,0 = bn,0 = cn,0 = 0 and dn,0 = 1,
see Sections D and E in the Appendix for a proof, and so
the limits in (76) hold trivially. We will now establish the

first limit in (77) corresponding to an,k . From the procedure
used to obtain (60), i.e. substituting the expressions for [vn]n,
[vn]n−1, [vn]n−2 and [vn]n−3 from (59) into (54), it is evident
that

an,k = h4k−3 (pn,k − 3pn−1,k + 3pn−2,k − pn−3,k
)

− h4k−3 (pn,k−1 + pn−1,k−1
)

(79)

for all k ∈ {0, 1, . . . ⌊(n+ 1)/2⌋}. Here the coefficients pn,k ,
pn−1,k , pn−2,k , pn−3,k , pn,k−1 and pn−1,k−1 are given by the
formula in (64). Using the identity (A.3) with l = n + 2k −

4 and m = 4k one can verify using the formula in (64) that

pn,k − 3pn−1,k + 3pn−2,k − pn−3,k = (−1)k
(
n+ 2k − 4
4k − 3

)
.

Replacing the terms on the right side of (79) using the above
formula and the formulae for pn,k−1 and pn−1,k−1 obtained
from (64) we get

an,k = (−1)kh4k−3
[(
n+ 2k − 4
4k − 3

)
+

(
n+ 2k − 3
4k − 4

)
+

(
n+ 2k − 4
4k − 4

)]
. (80)

Writing the binomial coefficients in the above expression in
terms of factorials and recalling that h = 1/(n − 1) we can
rewrite (80) as follows:

an,k = (−1)k
[

1
(4k − 3)!

4k−4∏
i=0

n+ 2k − 4 − i
n− 1

,

+
1

(n− 1)(4k − 4)!

4k−5∏
i=0

n+ 2k − 3 − i
n− 1

+
1

(n− 1)(4k − 4)!

4k−5∏
i=0

n+ 2k − 4 − i
n− 1

]
. (81)

The three products denoted by the
∏

sign in the above
equation converge to 1 as n → ∞ and the terms multiplying
the second and third among them converge to zero as n → ∞.
Taking the limit as n → ∞ on both sides of the above
equation the first limit in (77) corresponding to an,k follows.
The limits corresponding to bn,k , cn,k and dn,k in (77) and (78)
can be established similarly. □

In the last proposition we showed that rn,k converges to
rk as n → ∞. We derive certain bounds for rn,k and rk in
the following proposition. In the proof below, the factorial of
negative integers must be understood to be 1.

Proposition 5. There exists a constant M > 0 such that

|rn,k | ≤
M k

(4k − 8)!
∀ k ≥ 2, ∀ n ≥ 5, (82)

|rk | ≤
M k

(4k − 8)!
∀ k ≥ 2. (83)

Proof:We claim that there exists a constantM1 > 1 such
that for all n ≥ 5 and k ≥ 1 we have

|an,k | ≤
M k

1

(4k − 4)!
, |bn,k | ≤

M k
1

(4k − 4)!
, (84)
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|cn,k | ≤
M k

1

(4k − 4)!
, |dn,k | ≤

M k
1

(4k − 4)!
. (85)

Indeed, the above estimates hold trivially for any n ≥ 5 and
k > ⌊(n+ 1)/2⌋, see (72). Suppose that n ≥ 5 and k ∈

{1, 2, . . . ⌊(n+ 1)/2⌋}. Then 2k ≤ n + 1 and so each term
(ratio) in the three products denoted by the

∏
sign in (81) is

less than 4. Since each of these three products contains less
than 4k terms and the term in front of these products is less
than 1/(4k − 4)!, it follows that |an,k | ≤ 3(44k )/(4k − 4)!.
So the estimate for an.k in (84) holds. The estimates for bn.k ,
cn.k and dn.k in (84)-(85) can be established similarly. This
completes the proof of the claim.

For n ≥ 5 we have an,0 = bn,0 = cn,0 = 0 and dn,0 = 1,
see Sections D and E in the Appendix. Using this and the
estimates in (84)-(85) to bound rn,k in (74) we get

|rn,k | ≤

∑
i+j=k
i,j≥0

2M k
1

(4i− 4)!(4j− 4)!
∀ k ≥ 1 ∀ n ≥ 5.

Note that the (α+1)th-term in the binomial expansion of (1+

1)α+β is less than 2α+β and so we have (α+β)! ≤ 2α+βα!β!

for all integers α, β ≥ 0. Using this to bound the terms in the
above summation we get that

|rn,k | ≤ (k + 1)
24k+1M k

1

(4k − 8)!
∀ k ≥ 2 ∀ n ≥ 5,

which implies the estimate in (82). The estimate in (83)
follows immediately from (75) and (82). □
Denote the limits in (76)-(78) to which an,k , bn,k , cn,k and

dn,k converge as n tends to infinity by ak , bk , ck and dk ,
respectively. Taking the limit as n tends to infinity on both
sides of (74) we get

rk =

∑
i+l=k
i,l≥0

(aidl − bicl) ∀ k ≥ 0. (86)

In the next proposition we will show that the functions fn
defined in (73) converge to the function

f =

∞∑
k=0

rky(2k) (87)

when y ∈ G1.5[0,T ].

Proposition 6. Fix T > 0 and y ∈ G1.5[0,T ]. Let f and fn
be the functions defined in (87) and (73), respectively. Then
f ∈ C∞[0,T ] and

lim
n→∞

∥fn − f ∥C4[0,T ] = 0. (88)

Proof: We will first show that f ∈ C∞[0,T ] and its ith

derivative is

f (i)(t) =

∞∑
k=0

rky(2k+i)(t) ∀ t ∈ [0,T ] (89)

and for each integer i ≥ 0. Note that the above series is
obtained by termwise differentiation of the series in (87).

Since y ∈ G1.5[0,T ], there exists a constant D > 0 such
that

sup
t∈[0,T ]

|y(2k)(t)| ≤ D2k+1((2k)!)1.5 ∀ k ≥ 0. (90)

Using the estimates in (83) and (90) we get

sup
t∈[0,T ]

∣∣rky(2k+i)(t)∣∣ ≤ C i
k , (91)

where

C i
k =

M kD2k+1+i((2k + i)!)1.5

(4k − 8)!
.

It is easy to verify that

lim
k→∞

C i
k+1

C i
k

= 0

and therefore it follows via the ratio test that the series∑
k≥0 C

i
k converges for each i ≥ 0. Since the terms in

the series in (89) are bounded by C i
k (see (91)), we can

conclude via the WeierstrassM -test that this series converges
uniformly on [0,T ] for each i ≥ 0. Moreover, the limit of
this series belongs to C[0,T ] since each term in it belongs to
C[0,T ]. In summary, the series in (89) obtained by termwise
differentiation of (87) converges uniformly to a continuous
function for each i ≥ 0. This implies that f ∈ C∞[0,T ] and
its ith-derivative is indeed given by the series in (89).

We will now complete the proof of this proposition by
showing that (88) holds. From (73) and (87) we get

f (i)n − f (i) =

∞∑
k=0

(rn,k − rk )y(2k+i)

for every i ≥ 0. Using (82), (83) and (90) it is easy to see that
∥(rn,k − rk )y(2k+i)∥C[0,T ] ≤ 2C i

k . Since
∑

k≥0 C
i
k < ∞ (see

the discussion in the paragraph above), it immediately follows
that for each ϵ > 0 there exists a k(ϵ) > 0 independent of n
such that∥∥∥ ∞∑

k=k(ϵ)

(rn,k − rk )y(2k+i)
∥∥∥
C[0,T ]

< ϵ ∀ n ≥ 5.

Furthermore, from (75) and (90) it follows that there exists an
n(ϵ) > 0 such that∥∥∥ k(ϵ)−1∑

k=0

(rn,k − rk )y(2k+i)
∥∥∥
C[0,T ]

< ϵ ∀ n > n(ϵ).

Since ϵ in the above two estimates are arbitrary, we can
conclude that limn→∞ ∥f (i)n − f (i)∥C[0,T ] = 0 for each i ≥

0 and so (88) holds. □
Recall the definition and properties of the steady states

of the PDE (1)-(3) from Section II. The following theorem
presents our solution to the PDE motion planning problem
stated in Problem 1.

Theorem 7. Let T > 0 and a steady state [wT 0]⊤ of the
PDE (1)-(3), with wT (x) = α for some constant α ∈ R and
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all x ∈ [0, 1], be given. Fix y = αψ , where ψ ∈ G1.5[0,T ] is
the function in (67). Define the function f via (87), i.e.

f =

∞∑
k=0

rky(2k),

so that f ∈ C∞[0,T ] and (16) holds. Then the solution w of
the PDE (1)-(3) for the zero initial state and control input f
satisfies

w(x,T ) = wT and wt (x,T ) = 0 ∀ x ∈ [0, 1], (92)

i.e. the control input f transfers the PDE (1)-(3) from the
zero state to the steady state [wT 0]⊤ over the time interval
[0,T ]. In other words, f solves Problem 1 for the given T and
steady state [wT 0]⊤.

Proof: Recall the discretization operator Rn from the
notations in Section I and observe that

[ RnwT
0

]
is a steady state

of the nth-order semi-discrete system (25). Let the function y
be as in the theorem statement and define fn using (73). Let
vn be the solution of the nth-order semi-discrete system (25)
for the zero initial state and input fn. It then follows from
Theorem 3 that

vn(T ) = RnwT , v̇n(T ) = 0, (93)

i.e. fn transfers (25) from the zero state to the steady state[ RnwT
0

]
over the time interval [0,T ].

From the properties of ψ in (68) and since y = αψ , we get
that y ∈ C∞[0,T ] and

y(i)(0) = 0 ∀ i ≥ 0. (94)

Recall that fn is also given by the finite sum in (71) and
so clearly fn ∈ C∞[0,T ] and f (i)n (0) = 0 for all i ≥ 0.
From Proposition 6 we get that f defined via (87) belongs
to C∞[0,T ] and limn→∞ ∥fn − f ∥C4[0,T ] = 0. Furthermore,
using (89) and (94) we get that f (i)(0) = 0 for all i ≥ 0.
In summary, the inputs fn and f satisfy all the hypothesis in
Proposition 1 and Theorem 2.

From Proposition 1 we get that the solution w of the
PDE (1)-(3) corresponding to zero initial state and input f
belongs to C∞([0,T ];C5[0, 1]). From Theorem 2 it follows
that this w and vn defined above (93) satisfy

lim
n→∞

∥Rnw(·,T ) − vn(T )∥∞ = 0,

lim
n→∞

∥Rnwt (·,T ) − v̇n(T )∥∞ = 0.

This, together with (93), gives

lim
n→∞

(
∥Rnw(·,T ) − RnwT ∥∞ + ∥Rnwt (·,T )∥∞

)
= 0.

Now since w(·,T ),wt (·,T ),wT ∈ C[0, 1], we can conclude
from the above expression that (92) holds. □

Remark 3. Consider an Euler-Bernoulli beam PDE with
boundary input. The nth-order semi-discrete systems, derived
using the standard finite-difference scheme, for approximat-
ing the adjoint system of this beam PDE are often not

uniformly (in n) observable. This anomaly is caused by the
behaviour of the high frequency eigenvalues of the semi-
discrete systems. It can however be rectified by modifying
the semi-discrete systems using filtering [8], [9], [11], and
the averaging operator [10], [12], so that the modified
semi-discrete systems are uniformly (in n) observable. Hence
suitably modified nth-order semi-discrete approximations of
the beam PDE can be used to construct control inputs for
transferring the beam PDE between any two given states,
see [8], [9], and [10]. The current paper is significantly
different from these works for two reasons: (i) In this
paper we restrict our attention to the practically relevant
motion planning problem of transferring the beam PDE
between steady states, whereas [8], [9], and [10] consider
the more general problem of transferring the beam PDE
between arbitrary states in the state space, and (ii) we
use the flatness technique to construct our control inputs
which is different from the techniques used in [8], [9],
and [10]. For these reasons, unlike [8], [9], and [10], we can
use the nth-order semi-discrete systems obtained using the
standard finite-difference scheme without modifications to
construct the desired control signals, and we have established
this rigorously in this section. Finally, we remark that
unlike [8] which considers clamped boundary conditions,
[9] which considers hinged boundary conditions and [10]
which considers cantilever boundary conditions, we consider
sliding cantilever boundary conditions in this paper.

A. NUMERICAL SIMULATIONS
In this section we numerically illustrate our solution to the
motion planning problem, Problem 1, for the beam PDE (1)-
(3) presented in Theorem 7.

FIGURE 4. The trajectory of the beam displacement w starts from
w(·, 0) = 0 at 0 seconds and reaches w(·, 5) = 1 at 5 seconds as desired.

In our simulations, the goal is to transfer (1)-(3) from the
zero state to the steady state [wT 0]⊤, with wT (x) = 1 for all
x ∈ [0, 1], over the time interval [0, 5]. We have computed
the control input f required for this transfer by following the
procedure in the statement of the theorem. Observe that the
expression for f is an infinite series, see (87). We truncate
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this series after 21 terms to compute a sufficiently accurate
approximation of f . Figure 4 shows the solution w of (1)-(3)
for this input and zero initial state and Figure 5 shows the time
derivative wt . As seen from the plots, the solution starts at the
zero state at 0 seconds and reaches the desired steady state at
5 seconds.

FIGURE 5. The trajectory of the beam velocity wt starts from
wt (·, 0) = 0 at 0 seconds and goes back to wt (·, 5) = 0 at 5 seconds as
desired.

VI. MOTION PLANNING FOR THE NONUNIFORM BEAM
PDE
In this section we describe a procedure for constructing
control inputs which can solve the motion planning problem,
Problem 1, even when the flexural rigidity of the beam PDE
is spatially varying. This procedure is a generalization of the
approach that we have presented in Sections IV and V for the
uniform beam. However, unlike in Sections IV and V we do
not provide any proofs in this section. Instead we present a
step-by-step guideline for constructing the control input and
illustrate the efficacy of our procedure using an example.

We will first derive parameterizations for the state and
input of the nth-order semi-discrete approximation (25).
These parameterizations, which are analogous to those
developed in Section IV for the uniform beam, will be
required for constructing the desired control inputs using our
guideline.

Note that the nth-order semi-discrete system for the non-
uniform beam (25) can equivalently be written as

v̈n(t) = −Pnvn(t) + Bnfn(t) ∀ t ≥ 0, (95)

which is a collection of n scalar differential equations. Here
Pn = L⊤

n EnLn. By rearranging the terms in each of these
equations we obtain the following set of n equations which
are equivalent to (25):

[vn]3 = h4σ1,0[v̈n]1 + σ1,1[vn]1 + σ1,2[vn]2, (96)

[vn]4=h4σ2,0[v̈n]2 +σ2,1[vn]1 +σ2,2[vn]2 +σ2,3[vn]3,

(97)

[vn]j+2=h4σj,0[v̈n]j+σj,j−2[vn]j−2+σj,j−1[vn]j−1

+σj,j[vn]j + σj,j+1[vn]j+1 ∀ j∈{3, 4, . . . n−2},

(98)

h4[v̈n]n−1 = σn−1,n−3[vn]n−3 + σn−1,n−2[vn]n−2

+ σn−1,n−1[vn]n−1 + σn−1,n[vn]n −
h3fn
3
,

(99)

h4[v̈n]n = σn,n−2[vn]n−2 + σn,n−1[vn]n−1 + σn,n[vn]n

−
2h3fn
3

. (100)

The above equations are analogous to (49)-(53) derived
in Section IV for the uniform beam. The constants σi,j
in these equations are determined by the flexural rigidity
EI , see Appendix C for the definition of these constants.
Equations (99) and (100) can be equivalently written
as:

fn =
1
h3

(
σn−1,n−3[vn]n−3 + (σn−1,n−2 + σn,n−2)[vn]n−2

+ (σn−1,n−1 + σn,n−1)[vn]n−1 + (σn−1,n + σn,n)[vn]n
)

− h([v̈n]n−1 + [v̈n]n) (101)

0 =
1
6h

(
2σn−1,n−3[vn]n−3 + (2σn−1,n−2 − σn,n−2)[vn]n−2

+(2σn−1,n−1 − σn,n−1)[vn]n−1+(2σn−1,n − σn,n)[vn]n
)

−
h3

6
(2[v̈n]n−1 − [v̈n]n). (102)

Note that (101) is obtained by adding (99) and (100)
and (102) is obtained by eliminating fn from (99) and (100).
Define

y1 = [vn]1, y2 = 2
[vn]2 − [vn]1

h2
. (103)

Following the procedure used to obtain (59), (60) and (61)
from (49)-(55) by substituting for [vn]1 and [vn]2 from (56),
we obtain (104), (105) and (106) from (96)-(102) by
substituting for [vn]1 and [vn]2 from (103):

[vn]j =

⌊
j−1
2 ⌋∑

k=0

[
pj,kh4ky

(2k)
1 + qj,kh4k+2y(2k)2

]
. (104)

fn =

⌊
n+1
2 ⌋∑

k=0

[
an,ky

(2k)
1 + bn,ky

(2k)
2

]
, (105)

0 =

⌊
n+1
2 ⌋∑

k=0

[
cn,ky

(2k)
1 + dn,ky

(2k)
2

]
, (106)

Once n is fixed, the procedure used to obtain (104)-(106)
naturally yields the values of the coefficients pj,k , qj,k , an,k ,
bn,k , cn,k and dn,k .
Suppose that y1, y2 ∈ C∞[0,T ] are chosen such

that (106) holds. Then vn and fn determined via (104)
and (105) solve (95), see the discussion below (61) for the
reasoning. So (104)-(106) is a parameterization for the nth-
order semi-discrete approximation (25) of the nonuniform
beam. We now present our guideline for constructing control
inputs which can solve the motion planning problem,
Problem 1.
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Guideline for solving Problem 1

Given. A steady state [wT 0]⊤ of the PDE (1)-(3) with
wT (x) = α for all x ∈ [0, 1] and some α ∈ R and a time
of transfer T > 0.
Step 1. Fix n ∈ N large. Find the values of the coefficients

an,k , bn,k , cn,k and dn,k appearing in (105)-(106).
Step 2. Let y =

αψ
dn,0

, whereψ is the function defined in (67).
Compute the functions y1 and y2 as follows:

y1(t)=
⌊
n+1
2 ⌋∑

k=0

dn,ky(2k)(t), y2(t)=−

⌊
n+1
2 ⌋∑

k=0

cn,ky(2k)(t)

for each t ∈ [0,T ].
Step 3. Compute the control input fn using (105) and the

functions y1 and y2 obtained from Step 2.
Step 4. Apply fn to the PDE (1)-(3) and verify if ∥w(·,T ) −

wT ∥C1[0,1] is sufficiently small. If not, increase n and
repeat Steps 1-4.

The control input fn obtained using the above guideline
transfers the PDE satisfactorily from the zero initial state
to the desired final steady provided n is sufficiently large.
Moreover, fn converges to a limiting function f as n → ∞

which solves Problem 1. We have verified this extensively
in simulations (one such simulation is presented in the next
section) and hope to establish it theoretically in a future
work. We remark that the above guideline for constructing
the control inputs is consistent with the approach presented
in Sections IV and V for constructing control inputs for the
uniform beam. In particular, when EI = 1, the input fn
computed using the guideline converges to the control input
f presented in Section V as n → ∞.

Remark 4. In this paper we have presented an approach
for constructing control signals which can transfer
Euler-Bernoulli beams with sliding cantilever boundary
conditions between steady states. We have established the
efficacy of this approach theoretically for uniform beams
in Sections IV and V and via a numerical example for
nonuniform beams in this section. Our approach can in
principle be used for transferring Euler-Bernoulli beams with
other boundary conditions between steady states. Indeed,
in our conference paper [21] we have demonstrated this
numerically for Euler-Bernoulli beams with hinged boundary
conditions.

A. NUMERICAL SIMULATIONS
In this section we consider a motion planning problem,
Problem 1, for a non-uniform beam PDE. We demonstrate
numerically that the control inputs fn constructed for this
problem using the guideline given above converge to a
limiting function f as n → ∞ and that fn solves the problem
satisfactorily provided n is sufficiently large.
Consider the beam PDE (1)-(3) with the following flexural

rigidity: EI (x) = 1 + 3x for all x ∈ [0, 1]. Our objective
is to solve the motion planning problem of transferring this

FIGURE 6. The difference ∥fn − f2000∥C2[0,5] decays as n is increased
which indicates that fn converges to a limiting function f as n → ∞.

FIGURE 7. The plots of fn for n ∈ {10, 100, 200, . . . 1000}. It is evident
from these plots that fn converges to a limiting function f as n → ∞.

FIGURE 8. The trajectory of the beam displacement w starts from zero at
0 seconds and reaches close to one at 5 seconds when the control input
is f1000.

beam PDE from the zero initial state to the final steady state
[wT 0]⊤, where wT (x) = 1 for all x ∈ [0, 1], over a 5 second
time interval. Accordingly, for n ∈ {10, 100, 200, . . . 1000},
we compute the control input fn required for this transfer by
following the steps in our guideline and verify numerically
that the control input f1000 solves the motion planning
problem satisfactorily. Figure 6 shows that the difference
between fn and fm is small when n and m are large, which
indicates that fn converges to a limiting function f as n →

∞. This is also evident from the plots of fn for n ∈

{10, 30, 50, 70, 100, 1000} shown in Figure 7. Figures 8
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and 9 show that f1000 transfers the PDE (1)-(3) close to the
final steady state [wT 0]⊤ in 5 seconds.

FIGURE 9. The trajectory of the beam velocity wt starts from zero at
0 seconds and comes back close to zero at 5 seconds when the control
input is f1000.

VII. CONCLUSION
In this paper we have solved a motion planning problem
for a Euler-Bernoulli beam with sliding cantilever boundary
conditions using the early lumping approach. We have
derived a finite-difference based semi-discrete approximation
of the beam PDE and showed that the solution to the
semi-discrete system converges to the solution of the PDE as
the discretization step size tends to zero. Given a steady state
of the beam PDE and a time interval, in the case of a uniform
beam we have shown that control signals derived via the
flatness technique for transferring the semi-discrete system
from the zero state to the steady-state obtained by discretizing
the given beam steady-state converge to a limiting control
signal as the discretization step size tends to zero, and that
this limiting control signal transfers the beam PDE from the
zero state to the desired steady state over the given time
interval. The same is also true in the case of a nonuniform
beam and we have demonstrated this using a numerical
example. Future work will focus on extending the early
lumping approach to solve motion planning problems for
more complex (nonlinear, higher-dimensional) PDEs.

APPENDIX
A. PROPERTIES OF THE BINOMIAL COEFFICIENTS
Recall the binomial coefficients from Remark 2, see (62)
and (63). We present four identities below which we will
use in this Appendix. Let l and m be two integers. The first
identity is(

l + 1
m

)
−

(
l
m

)
=

(
l

m− 1

)
∀ l ≥ 0, (A.1)

see [24, Chapter 5,Section 1] for a proof. Substituting l+1 in
place of l in the above identity we get(

l + 2
m

)
−

(
l + 1
m

)
=

(
l + 1
m− 1

)
.

Subtracting (A.1) from the above equation and simplifying
the terms on the right side of the resulting equation,

by using (A.1) with m − 1 in place of m, we get our second
identity:(

l + 2
m

)
− 2

(
l + 1
m

)
+

(
l
m

)
=

(
l + 1
m− 1

)
−

(
l

m− 1

)
=

(
l

m− 2

)
∀ l ≥ 0. (A.2)

Using l + 1 in place of l in the above equation we get(
l + 3
m

)
− 2

(
l + 2
m

)
+

(
l + 1
m

)
=

(
l + 1
m− 2

)
.

Subtracting (A.2) from the above equation and simplifying
the terms on the right side of the resulting equation,
by using (A.1) with m − 2 in place of m, we get our third
identity: For any l ≥ 0,(

l + 3
m

)
− 3

(
l + 2
m

)
+ 3

(
l + 1
m

)
−

(
l
m

)
=

(
l

m− 3

)
.

(A.3)

Proceeding this way, i.e. subtracting (A.3) from the expres-
sion obtained by replacing l with l + 1 in (A.3) and then
using (A.1) to simplify the terms on the right side we get our
fourth and final identity:(

l + 4
m

)
− 4

(
l + 3
m

)
+ 6

(
l + 2
m

)
− 4

(
l + 1
m

)
+

(
l
m

)
=

(
l

m− 4

)
∀ l ≥ 0. (A.4)

B. VERIFICATION OF THE FORMULAE FOR pj,k AND qj,k
The parametrization for vn in (59) can equivalently be written
as

[vn]j =

n∑
k=0

[
pj,kh4ky

(2k)
1 + qj,kh4k+2y(2k)2

]
(A.5)

if we define pj,k = qj,k = 0 for j ∈ {1, 2, . . . n} and k ∈

{⌊(j− 1)/2⌋+1, ⌊(j− 1)/2⌋+2, . . . n}. Using the convention
adopted in (63) it is easy to see that the pj,k and qj,k for these
values of j and k are also given by the formulae (64) and (65).
We verify below that (A.5) holds with pj,k and qj,k given by
the formulae in (64) and (65) for j ∈ {1, 2, . . . n} and k ∈

{0, 1, . . . n}.
Comparing the parameterizations for [vn]1, [vn]2, [vn]3 and

[vn]4 obtained from (A.5) with (56), (57) and (58) it is easy
to see that

p1,0 = 1, p1,k = 0 ∀ k ∈ {1, 2, . . . n},

q1,k = 0 ∀ k ∈ {0, 1, . . . n},

p2,0 = 1, p2,k = 0 ∀ k ∈ {1, 2, . . . n},

q2,0 =
1
2
, q2,k = 0 ∀ k ∈ {1, 2, . . . n},

p3,0 = 1, p3,1 = −1, p3,k = 0 ∀ k ∈ {2, 3, . . . n},

q3,0 = 2, q3,k = 0 ∀ k ∈ {1, 2, . . . n},

p4,0 = 1, p4,1 = −5, p4,k = 0 ∀ k ∈ {2, 3, . . . n},
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q4,0 =
9
2
, q4,1 = −

1
2
, q4,k = 0 ∀ k ∈ {2, 3, . . . n}.

The values of pj,k and qj,k for j ∈ {1, 2, 3, 4} and k ∈

{0, 1, . . . n} shown above are the same as those given by
the formulae in (64) and (65). We will now show via
mathematical induction that the values of pj,k and qj,k for
j ∈ {5, 6, . . . n} and k ∈ {0, 1, . . . n} are also given by the
formulae in (64) and (65).
Suppose that for some 4 ≤ m̄ < n the values of pj,k and

qj,k for all j ∈ {4, 5, . . . m̄} and k ∈ {0, 1, . . . n} are given by
the formulae in (64) and (65). Taking j = m̄ − 1 in (51) we
get

[vn]m̄+1 = −h4[v̈n]m̄−1 − [vn]m̄−3 + 4[vn]m̄−2

− 6[vn]m̄−1 + 4[vn]m̄.
(A.6)

Substituting the parameterizations for [vn]m̄−3, [vn]m̄−2,
[vn]m̄−1, [vn]m̄ and [vn]m̄+1 from (A.5) into the above
equation and comparing the coefficients of h4ky(2k)1 and
h4k+2y(2k)2 on both sides of the resulting equation we get

pm̄+1,k = −pm̄−1,k−1 − pm̄−3,k + 4 pm̄−2,k

− 6 pm̄−1,k + 4 pm̄,k , (A.7)

qm̄+1,k = −qm̄−1,k−1 − qm̄−3,k + 4 qm̄−2,k

− 6 qm̄−1,k + 4 qm̄,k (A.8)

for all k ∈ {0, 1, . . . n}. Here pm̄−1,−1 = qm̄−1,−1 = 0.
The induction assumption implies that the values of the
coefficients pm̄−1,k−1, pm̄−3,k , pm̄−2,k , pm̄−1,k and pm̄,k are
given by the formula in (64). Replacing these coefficients on
the right side of (A.7) using the formula from (64) and then
simplifying the resulting summation using the identity (A.4)
with l = m̄+ 2k − 4 and m = 4k we get

pm̄+1,k = (−1)k
(
m̄+ 2k
4k

)
= (−1)k

(
(m̄+ 1) + 2k − 1

4k

)
for all k ∈ {0, 1, . . . n}. Hence the value of pm̄+1,k is also
given by the formula in (64). So we have shown that p4,k
is given by (64) and if pj,k for all j ∈ {4, 5, . . . m̄} and
some m̄ < n is given by (64), then pm̄+1,k is also given
by (64). So it follows from the principle of mathematical
induction that the value of pj,k for all j ∈ {4, 5, . . . n} and k ∈

{0, 1, . . . n} is given by the formula in (64). This completes
the verification of the formula for pj,k in (64). The formula
for qj,k in (65) can be verified analogously via mathematical
induction using (A.8).

C. ADDITIONAL NOTATIONS
Recall the notation EI and h from Section III. The constants
σi,j appearing in (96)-(100) are defined as follows:

TABLE 1. The definitions of the constants σi,j in (96)-(100).

D. PROOF OF an,0 = 0, cn,0 = 0
From the procedure described above (60) for deriving (60)-
(61), it is evident that

an,0 =
1
h3

(pn,0 − 3 pn−1,0 + 3 pn−2,0 − pn−3,0),

cn,0 =
1
6h

(11pn,0 − 18pn−1,0 + 9 pn−2,0 − 2pn−3,0)

for n ≥ 5. Letting k = 0 in (64) we get pj,0 = 1. Using this
in the above expressions we get an,0 = cn,0 = 0.

E. PROOF OF bn,0 = 0, dn,0 = 1
From the procedure described above (60) for deriving (60)-
(61), it is evident that

bn,0 =
1
h
(qn,0 − 3 qn−1,0 + 3 qn−2,0 − qn−3,0), (A.9)

dn,0 =
h
6
(11qn,0 − 18qn−1,0 + 9 qn−2,0 − 2qn−3,0) (A.10)

for n ≥ 5. Letting k = 0 in (65) we get

qj,0 =
(j− 1)2

2
.

Using this in (A.9) and (A.10) we get bn,0 = 0 and dn,0 =

(n− 1)h. Since (n− 1)h = 1, it follows that dn,0 = 1.
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